三相智能仪表操作说明书


特点:

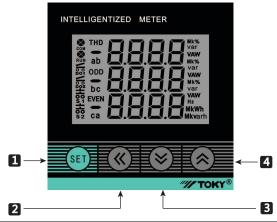
- ○测量项目:电压/电流/有功功率/无功功率/频率/功率因数/等,共28个可选电参数 ○真有效值测量
- ○具有RS485数字接口,采用Modbus RTU通信协议,通讯数据float、long型可选,传送顺序可选,或变送4~20mA输出
- ⊙具有一路电能脉冲输出;一路可编程报警;显示编程设置输入参数
- ⊙对显示页面选择/有功电度/无功电度有掉电保护功能

该系列仪表可广泛应用于控制系统、SCADA系统和能源管理系统中、变电站自动化、配电网自动化、小区电力监控、工业自动化、智能建筑、智能型配电盘、开关柜等各种自动化控制系统中,安装方便、接线简单、维护方便、工程量小、现场可编程设置输入参数的特点。

♠ 警告 如果不按说明书操作会发生意外,而且会导致产品毁坏。

一、仪表型号

二、型号说明

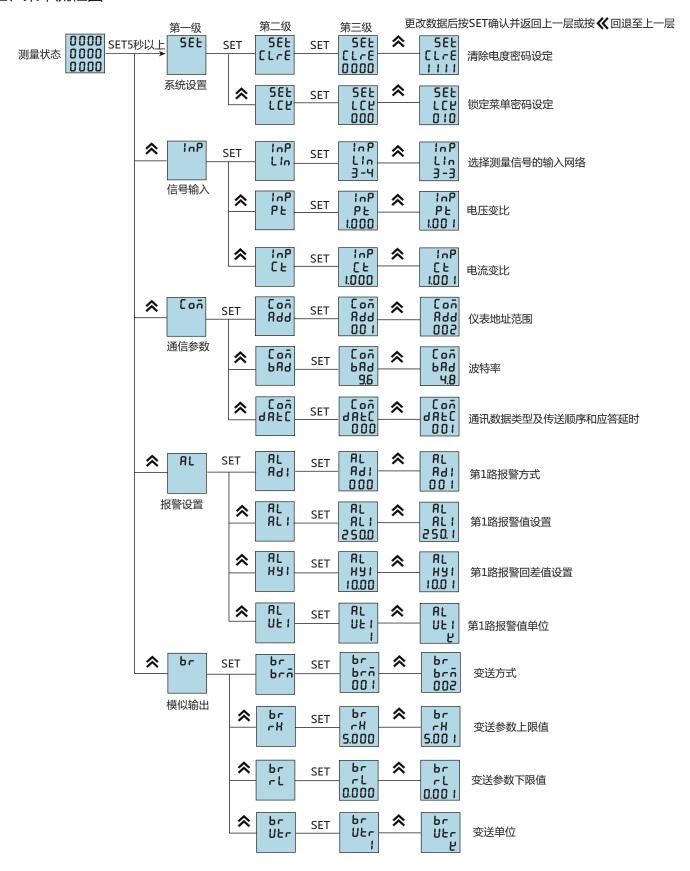

型 <i>号</i>	报警输出	通讯功能	变送输出	有功电能脉冲输出功能	输入量程
DS7L□-A30B	无	无	无		
DS7L□-A38B	无	RS485	无		
DS7L□-RB30B	1	无	无	7200imp/kWh	400V
DS7L□-RB38B	1	RS485	无		5A
DS7L□-DB30B	1	无	4 ~ 20mA		
DS7L□-A30A	无	无	无		
DS7L□-A38A	无	RS485	无		100V
DS7L□-RB30A	1	无	无	28800imp/kWh	5A
DS7L□-RB38A	1	RS485	无		
DS7L□-DB30A	1	无	4 ~ 20mA		

三、主要技术参数

网络	三相三线、三相四线,50/60Hz
电压测量范围	A:线电压20~100V B:AC 25~260V相电压/AC 25~400V线电压 注意:B:电压无变比输入型,在三相三线接入时,且输入仪表线电压U、线电流I,满足U×I<2000时, 最大输入极限电压为450V.同理,A:在确保二次U×I<500时,最大输入极限电压为120V.
电压过负荷	持续:1.2倍 瞬时:2倍/10S
电压功耗	<1VA (每相)

电压阻抗	≥300KΩ@≇	≥300KΩ@额定380V ≥100KΩ@额定100V								
电压精度	RMS测量 料	RMS测量 精度0.5级								
电流测量范围	AC 0.025 ~ 5A									
电流过负荷	持续:1.2倍	瞬时:10倍/10S								
电流功耗	<0.5VA (每	事相)								
电流阻抗	<80mΩ									
电流精度	RMS测量 精	意度0.5级								
频 率	45 ~ 60Hz、	精度0.1Hz								
功 率	有功、无功、	、视在功率,精度1级								
电能	有功精度、	无功精度1%								
显示	LCD循环切换	Þ								
电源工作范围	AC/DC 10	0~240V (85~265V)								
电源功耗	≤7VA									
输出数字接口	RS-485 , 采	用MODBUS-RTU 协议								
脉冲输出	1路电能脉冲	输出(光耦继电器) (380V)脉冲常	数7200imp/kwh或(100V)28800imp/kwh							
报警输出	1路开关输出	, 250VAC/3A或30VDC/5A								
变送输出	4 ~ 20mA	负载<600Ω 温漂250ppm								
工作环境	温度:-10~	·55℃ 湿度:<85% RH								
储存环境	-20 ~ 75℃									
隔离耐压	信号输入和理	电源2000VAC,信号输入和输出2000VA	AC,电源和变送输出,485接口,脉冲输出接口≥A	C 2000V						
绝缘	输入、输出、	电源对机壳 > 100MΩ								
	EN 41	辐射骚扰	CISPR22/EN55022 CLASS B							
	EMI	传导骚扰	CISPR22/EN55022 CLASS B							
		静电放电	IEC/EN61000-4-2 Air±8KV/Contact ±6KV	perf.Criteria B						
		辐射抗扰度	IEC/EN61000-4-3 10V/M	perf.Criteria A						
中班莱克	EMS	脉冲群抗扰度	IEC/EN61000-4-4 ±4KV	perf.Criteria B						
电磁兼容	EIVIS	浪涌抗扰度	IEC/EN61000-4-5 ±2KV/±4KV	perf.Criteria B						
		传导骚扰抗扰度	IEC/EN61000-4-6 10 Vr.m.s	perf.Criteria A						
		工频磁场抗扰度	IEC/EN61000-4-8 10A/M	perf.Criteria A						
		电压暂降、跌落和短时中断抗扰度								
外形尺寸	72W×72H×	100L (mm)								
重量	0.6kg									

四、面板说明



序号	符号	名 称	功 能 说 明
1	(E)	确认键	长按>3S即可进入或退出菜单,在菜单操作中用来确认保存修改后的菜单值
2	(()	回退键	在菜单操作中可以使操作菜单向上一层返回
3	8	减少键	菜单操作中可以切换菜单及对菜单值进行增加操作
4	8	增加键	菜单操作中可以切换菜单及菜单值进行减少操作

查看测量值及仪表工作状态说明:

- 1.在测量状态下,按键 "≪/❤" 进行三相电压、三相电流、总功率、功率因数及频率画面切换显示。
- 2.DO1在报警模式下作为报警输出状态指示。
- 3.COMM闪动时表示正在通信; RUN转动时表示整机测量运行。

五、菜单流程图

六、菜单修改说明

用户菜单状态下

- 1、按 "SET" 键大于3秒以上,进入用户菜单,进行相应参数修改设置。

- 1、按 SEI 键入了3秒以上,进入用户来单,近17旧应参数形以反直。 2、如果当前是第1级或第2级显示,按确认键"SET",进入下级显示,点动"❤"、"≪"键,改变菜单子项。 3、如果当前是第2级或第3级显示,点动"❤"键,退回上一级显示。 4、如果当前是第3级显示,点动"❤"、"≪"键进行数值微调,按住"❤"或"≪"键不松手可以连续调整数值。调整好数值后 按确认键"SET"保存设置数值并退回第2级显示;若按"**《**"键,则不保存设置数值并退回第2级。 5、同时点按"**《**" + "**《**或**》**"键,进行小数点移动。
- 6、修改完毕,按下确认键"SET"超过3秒,退出用户菜单,返回至测量状态。

菜单结构及功能描述

717-71	がない。			
序号	第1级	第2级	第 3 级	描 述
	SEŁ	清除电能 [LrE	密码数据 0000	当输入的密码正确时才可以清除电能(密码:1111)
1	系统设置SET	功能屏蔽密码 LCL	屏蔽密码 〇〇〇	当第二位数据为"1"(例如010)菜单中的数据 只能查看,不能修改
		网络 Lin	3-3 3-4	选择测量信号的输入网络
2	¦ਜ਼₽ 信号输入Inp	电压变比 尸上	1-9999	设置电压信号变比=1次侧电压/2次侧电压
	קיינא ינייהיי בוו	电流变比 []	1-9999	设置电流信号变比=1次侧电流/2次侧电流
		地址 823	0-255	仪表地址范围
3	Con Seattoon	波特率 6月日	4.8-9.6	波特率4.8表示4800,9.6表示9600
	通信参数COM	通讯数据类型及传 d R L C 送顺序和应答延时 d R L C	000	第一位表示数据类型,第二位表示数据传送顺序, 第三位应答延时,详见注⑤
		第1路报警方式 ♬♂↓	1-52	值为0时对应DO1,否则为报警方式参考"附表1"
4	AL.	第1路报警动作值 吊上 {	-1999-9999	第1路报警值设置
	报警设置AL brā	第1路报警回差值 片当1	0-9999	第1路报警回差值设置
	QF A	第1路报警值单位 11 61	1-E	1:代表国际标准单位,K:代表国际标准单位的1000倍,报警值与报警回差值单位一致
		变送模式选择 口口	1-26	参考附表1
5	Ьr	变送上限 广片	-1999-9999	对应变送输出20mA
3	变送设置	变送下限 广上	-1999-9999	对应变送输出4mA
		变送单位 じヒト	1-F	1:代表国际标准单位,K:代表国际标准单位的1000倍

七、输出功能

1、电能脉冲

DS7L提供电能计量;并有一路AP电能脉冲输出功能和RS485的数字接口来完成电能数据的远传。

AP与APGND之间为集电极开路的光耦继电器的电能脉冲实现有功电能AP远传,采用远程计算机终端、PLC、DI开关采集模块采集仪表的脉冲总数来实现电能累积计量。另外此输出方式还是电能的精度检验的方式(国家计量规程:标准表的脉冲误差比较方法)。

- (1)电气特性:集电极开路的光耦继电器输出, V≤48V, Iz≤50mA。
- (2)脉冲常数例如:7200imp/KWh,其意义为:当仪表累积1kWh时脉冲输出个数为7200个。

需要强调的是1kWh为电能的2次侧电能数据,设PT、CT接入的情形下,相对的7200个脉冲数据对应1次侧电能等于1kWh×电压变比PT×电流变比CT。

- 2、通信功能(见通信协议)
- 3、报警功能(见附表1)

八、通信协议

DS7L系列表使用Modbus RTU通信协议,进行RS485半双工通信,读功能号0x03,写功能号0x10,

采用16位CRC校验,仪表对校验错误不返回。

数据帧格式:

起始位	数据位	停止位	校验位
1	8	1	无

通信异常处理:

异常应答时,将功能号的最高位置1.例如:主机请求功能是号0x04,则从机返回的功能号对应项为0x84.

错误类型码

0x01---功能码非法:仪表不支持接收到的功能号.

0x02---数据位置非法:主机指定的数据位置超出仪表的范围.

0x03---数据值非法:主机发送的数据值超出仪表对应的数据范围.

通讯周期:

通讯周期指主机数据请求完成到从机返回数据完成的时间。即:通讯周期=请求数据发送时间+从机备答时间+应答延时时间+应答返回时间。以9600波特率为例:单测量数据通讯周期不小于250ms.

1、读多寄存器

例:主机读取浮点数AL1(第1路报警值241.5)

AL1的地址编码是0x0000,因为AL1是浮点数(4字节),占用2个数据寄存器.十进制浮点数241.5的IEEE-754标准16进制内存码为0x00807143.

	主机请求(读多寄存器)											
1	1 2 3 4 5 6 7 8											
表地址 功能号 起始地址 起始地址 数据字长 数据字长 CRC码 CRC石 高位 低位 高位 低位 的低位 的高位												
0x01	0x03	0x00	0x00	0x00	0x02	0xC4	0x0B					

	从机正常应答(读多寄存器)										
1 2 3 4 5 6 7 8 9											
表地址 功能号 数据字 数据1 数据1 数据2 数据2 CRC码 节数 高位 低位 高位 低位 的低位								CRC码 的高位			
0x01	0x03	0x04	0x00	0x80	0x71	0x43	0 x9E	0x7A			

功能号异常应答:(例如主机请求功能号为0x04)

从机异常应答(读多寄存器)									
1 2 3 4 5									
表地址	功能号	错误码	CRC码的低位	CRC码的高位					
0x01	0x84	0x01	0x82	0xC0					

2、写多路寄存器

例:主机读取浮点数HY1(第1路报警回差值20.5)

HY1的地址编码是0x0001,因为HY1是浮点数(4字节),占用2个数据寄存器.十进制浮点数20.5的IEEE754标准16进制内存码为0x0000A441.

	主机请求(写多寄存器)											
1	2	3	4	5	6	7	8	9	10	11	12	13
表地址	功能号	起始 地址 高位	起始 地址 低位	数据 字长 高位	数据字长低位	数据 字节 长度	数据 1 高位	数据 1 低位	数据 2 高位	数据 2 低位	CRC低位	CRC高位
0x01	0x10	0x00	0x01	0x00	0x02	0x04	0x00	0x00	0xA4	0x41	0x88	0x93

	从机正常应答(写多寄存器)										
1	1 2 3 4 5 6 7 8										
							CRC码 的高位				
0x01	0x10	0x00	0x01	0x00	0x02	0x10	0x08				

数据位置错误应答:(例如主机请求写地址索引为0x0050)

从机异常应答(写多寄存器)									
1	1 2 3 4 5								
表地址	也址 功能号 错误码 CRC码的低位 CRC码的高位								
0x01	0x90	0x02	0xCD	0xC1					

3.DS7L相关参数地址映像表(注:地址号相当变量数组的索引)

序号	地址映像	变量名称	默认值	字长	取值范围	读/写允许	long型数据倍率	备注
0	0x0000	第1路报警值AL1	4.5	2	-1999 ~ 9999	R/W	0.001	
1	0x0001	第1路报警回差HY1	0.1	2	0~9999	R/W	0.001	
2	0x0002	保留	0	2	保留			
3	0x0003	保留	0	2	保留			
4	0x0004	电压变比PT	1.0	2	1~9999	R/W	0.001	
5	0x0005	电流变比CT	1.0	2	1~9999	R/W	0.001	
6	0x0006	变送上限值RH	5.0	2	-1999 ~ 9999	R/W	0.001	
7	0x0007	变送下限值RL	0	2	-1999 ~ 9999	R/W	0.001	
8	0x0008	相电压Ua		2	实测值	R	0.001	
9	0x0009	相电压Ub		2	实测值	R	0.001	
10	0x000A	相电压Uc		2	实测值	R	0.001	
11	0x000B	线电压Uab		2	实测值	R	0.001	
12	0x000C	线电压Ubc		2	实测值	R	0.001	
13	0x000D	线电压Uca		2	实测值	R	0.001	
14	0x000E	相电流Ia		2	实测值	R	0.001	
15	0x000F	相电流Ib		2	实测值	R	0.001	
16	0x0010	相电流Ic		2	实测值	R	0.001	

17	0x0011	A相有功功率Pa		2	实测值	R	0.001	
18	0x0012	B相有功功率Pb		2	实测值	R	0.001	
19	0x0013	C相有功功率Pc		2	实测值	R	0.001	
20	0x0014	总有功功率Ps		2	实测值	R	0.001	
21	0x0015	A相无功功率Qa		2	实测值	R	0.001	
22	0x0016	B相无功功率Qb		2	实测值	R	0.001	
23	0x0017	C相无功功率Qc		2	实测值	R	0.001	
24	0x0018	总无功功率Qs		2	实测值	R	0.001	
25	0x0019	A相视在功率VAa		2	实测值	R	0.001	
26	0x001A	B相视在功率VAb		2	实测值	R	0.001	
27	0x001B	C相视在功率VAc		2	实测值	R	0.001	
28	0x001C	总视在功率VAs		2	实测值	R	0.001	
29	0x001D	功率因数PFa		2	实测值	R	0.001	
30	0x001E	功率因数PFb		2	实测值	R	0.001	
31	0x001F	功率因数PFc		2	实测值	R	0.001	
32	0x0020	总功率因数PFs		2	实测值	R	0.001	
33	0x0021	频率		2	实测值	R	0.001	
34	0x0022	有功电度		2	0.00-999999.99	R	0.001	
35	0x0023	无功电度		2	0.00-999999.99	R	0.001	
			保留					
36	0x0051	第1路报警方式Ad1	14	1	0~52	R/W		附表1
37	0x0052	保留	0	1	保留			
38	0x0053	变送方式brm	7	1	1~26	R/W		
39	0x0054	第1路报警值单位	0	1	0~1	R/W		
40	0x0055	保留	0	1	保留			
41	0x0056	变送数值单位	0	1	0~1	R/W		
42	0x0057	接线方式Link	0	1	0~1	R/W		注①
43	0x0058	波特率bAUd	1	1	0~1	R/W		注②
44	0x0059	表地址Add	1	1	0~255	R/W		
45	0x005A	通讯数据类型及传送顺序和应答延时DATC	0	1	0~255	R		注⑤
46	0x005B	开关量输出D0		1	0~1	R/W		遥控注③
47	0x005C	保留		1	保留			
48	0x005D	仪表名称	0xD7	1	0xD7	R		
49	0x005E	状态指示		1	0~1	R		注③
	I .	1		l .		1	1	1

R/W----可读可写 R----只读

附表1:	报警输出电量参数对照表			
序号	项目	开关量输出(低报警)代码	开关量输出(高报警)代码	变送方式代码
1	Ua(A相电压)	1	2	1
2	Ub(B相电压)	3	4	2
3	Uc(C相电压)	5	6	3
4	Uab(AB线电压)	7	8	4
5	Ubc(BC线电压)	9	10	5
6	Uca(CA线电压)	11	12	6
7	Ia(A线电流)	13	14	7
8	Ib(B线电流)	15	16	8
9	Ic(C线电流)	17	18	9
10	Pa(A相有功功率)	19	20	10
11	Pb(B相有功功率)	21	22	11
12	Pc(C相有功功率)	23	24	12
13	Ps(总有功功率)	25	26	13
14	Qa(A相无功功率)	27	28	14

15	Qb(B相无功功率)	29	30	15
16	Qc(C相无功功率)	31	32	16
17	Qs(总无功功率)	33	34	17
18	Sa(A相视在功率)	35	36	18
19	Sb(B相视在功率)	37	38	19
20	Sc(C相视在功率)	39	40	20
21	Ss(总视在功率)	41	42	21
22	PFa(A相功率因素)	43	44	22
23	PFb(B相功率因素)	45	46	23
24	PFc(C相功率因素)	47	48	24
25	PFs(总功率因素)	49	50	25
26	F频率	51	52	26

注①:接线方式

注②:波特率

注④:报警/变送值单位

通信数值	0	1		
菜单显示	3-4	3-3		

通信数值	0	1
菜单显示	4.8	9.6

通信数值	0	1		
菜单显示	1	K		

注③:报警与DO输出状态指示

								A I 1 比太 O・不 担敬 1・担敬		
D7	De	חב	D4	בט	רט	D1	D0	ALI((\rightarrow\) U.(\rightarrow\) (\rightarrow\) (\rightarrow\)	ALI((\rightarrow\)	Ī
D/	D6	כט	D4	טס	D2		טט		DO1状态 0:断开 1:闭合	
									DO1状态 0:断开 1:闭合	

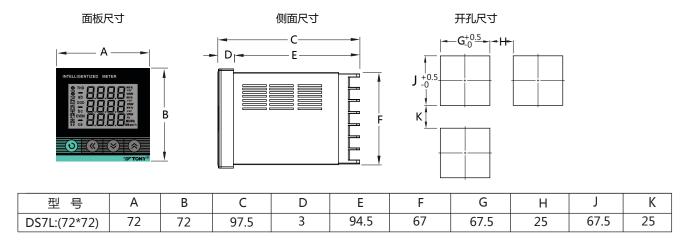
注⑤:通讯数据类型及传送顺序和应答延时说明

datc菜单设置值设置四字节数据通讯说明

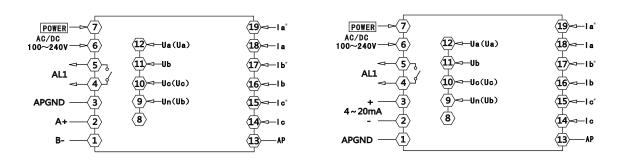
```
□ □ □ □ □ □ 应答延时,0~9分别为10~100ms

| 传送顺序:为0时1,2,3,4;为1时3,4,1,2

数据类型:为0时为float型;为1时为long型
```


数据类型说明:

float型数据采用IEEE-754标准16进制码组成,long型数据采用了四字节BE形式16进制码组成,正数用原码表示,负数用补码表示。


4字节字符内码表示的浮点数转化成十进制浮点数的程序

```
float BytesToFloat(unsigned char*pch)
   float result;
   unsigned char *p;
   p=(unsigned char*)&result;
  * p=*pch;*(p+1)=*(pch+1);*(p+2)=*(pch+2);*(p+3)=*(pch+3);
   return result;
十进制浮点数按IEEE-754标准转化成4字节字符内码表示的程序
void FloatToChar(float Fvalue,unsigned char*pch)
   unsigned char*P;
   p=(unsigned char*)&Fvalue;
  *pch=*p;*(pch+1)=*(p+1);*(pch+2)=*(p+2);*(pch+3)=*(p+3);
16位CRC校验码获取程序
unsigned int Get_CRC (uchar*pBuf,uchar num)
  unsigned i,j;
unsigned int wCrc=0xFFFF;
for(i=0;i < num;i++)
wCrc^=(unsigned int)(pBuf[i]);
for(j=0; j < 8; j++)
if(wCrc \&1)\{wCrc > = 1; wCrc = 0xA001;\}
else wCrc > = 1;
  return wCrc;
```

九、外形及安装开孔尺寸(mm)

十、接线图

注:电压输入接线端子,括号内标号表示三相三线接法;接线如有变动,请以出厂仪表接线为准.

说明:

A.电压输入:输入电压应不高于产品的额定输入电压,否则应考虑使用PT。

B.电流输入:标准额定输入电流为5A,大于5A的情况应使用外部CT,如果使用的CT上连有其它仪表,接线应采用串接方式。

C.要确保输入电压,电流相对应,相序一致,方向一致,否则会出现数值和符号错误(功率和电能)。

D.仪表输入网络的配置根据系统的CT的个数决定,在2个CT的情况下,选择三相三线两元件方式,在3个CT的情况下,选择三相四线三元方式, 仪表接线,仪表编程中设置的输入网络Link,应该同所有测量的负载的接线方式一致,不然会导致仪表测量的电压或功率不正确。

E.请注意三相四线制与三相三线制接线方式区别,如果接线错误将导致功率因数、功率和电能计量不正确。

注意事项:

- 1.电源线不要接错。
- 2.电压信号输入要注意相序。
- 3.电流信号输入要按接线图上标识的同名端连接。
- 4.接线方式要与用户菜单 "Link" 的设置一致。
- 5.能量脉冲输出为集电极开路输出。
- 6.仪表供电电源与主测线路之间建议隔离,以免导致漏电开关误动作。