Communication Protocol

General MODBUS-RTU communication protocol for counting, timing and
frequency measurement products
I . MODBUS-RTU Communication format

1. Basic Rules
1.1 Only one host is allowed in the same network.
1.2 All RS485 communication loops should follow the master/slave method for communication.
1.3 No communication can be initiated by the slave.
1.4. On the RS485 bus, all communications are transmitted in "information frames". "Information frame" is a character string composed of several
"data frames". It is a standard asynchronous serial data composed of an information header and transmitted encoded data.
1.5. If the master and slave receive information frames containing unknown commands, they will not respond.
2. Transmission method
Communication is based on bytes (data frames) and is transmitted asynchronously.
3. "Data frame" format

Each "data frame" contains a start bit, 8 data bits, parity or no parity bit, and a stop bit, a total of 10 bits of data.

D000 CIEE

start data end
bit bit bit

4 ."Information frame" format

Address code Function code Data area CRC check code

1 byte 1 byte N byte 2 byte(Low byte first and high byte last)

When the communication command is sent from the master to the slave, the slave that matches the table address sent by the master receives the command. If the
CRC check is correct and the command format is correct, the slave performs the corresponding operation and then returns the execution result to the master.
4.1 address code (1 byte)
Included in the address field of the "Information Frame", the address range is 1-247. The master strobes the slave by putting the slave table address into the
command's address field. When the slave returns data, it puts its own table address into the address field of the returned information, so that the master knows
which slave has responded (the table address of each device in the same bus must be unique).
4.2 function code (1 byte)
Contained in the function code field of the "information frame". When sent from the master to the slave, the function code will tell the slave that those operations
need to be performed. When the slave responds, the function code is used to indicate a normal response or an error occurs (abnormal response).
For a normal response, the slave only returns the received function code. For abnormal response, the slave will return the highest position of the received function code.

Function code definition

Function code Definition Operation
0x03 Read registers Read data from single or multiple registers
0x10 Write multiple registers Write n 32-bit binary data to n consecutive registers

4.3. Data Area

Included in the data field of the message, the data length varies depending on the function code.

4.4 CRC check code

The redundant cyclic code (CRC) contains 2 bytes, that is, 16-bit binary. The CRC code is calculated by the sending end and placed at the end of the sent
information. The device at the receiving end recalculates the CRC code of the received information and compares the calculated CRC code with the received
one. If the two do not match, it indicates an error.

The calculation method of the CRC code is to first preset all 16-bit registers. Then gradually process every 8-bit data information. When calculating the CRC code,
only 8 data bits, start bit and stop bit are used. If there is a parity bit, it also includes the parity bit and does not participate in the CRC code calculation.

When calculating the CRC code, the 8-bit data and the data of the register are XORed, and the result is shifted to the lower one bit, and the highest bit is filled
with 0. Check the lowest bit again. If the lowest bit is 1, XOR the contents of the register with the preset number. If the lowest bit is 0, no XOR operation is performed.

This process has been repeated 8 times. After the 8th shift, the next 8 bits are XORed with the contents of the current register again. This process is repeated 8
times as above. When all the data information is processed, the content of the last register is the CRC code value.

CRC-16 code calculation steps
4.4.1. Set the 16-bit register to hexadecimal FFFF (that is, all is 1). Call this register the CRC register.
4.4.2. XOR an 8-bit data with the lower bits of the 16-bit CRC register, and put the result in the CRC register.

4.4.3. Move the contents of the register one bit to the right (toward the low bit), fill the highest bit with 0, and check the lowest bit (shift out bit).
4.4.4. If the lowest bit is 0: repeat step 3 (shift again).

If the least significant bit is 1: the CRC register is XORed with the polynomial AO01 (1010 0000 0000 0001).
4.4.5. Repeat steps 3 and 4 until shifting to the right 8 times, so that the entire 8-bit data has been processed.
4.4.6. Repeat Step 2 to Step 5 for the next 8-bit processing.

4.4.7. The resulting CRC register is the CRC code, with the low byte first and the high byte second.

KKCI-A21E/A0/20200617 1

II. Command format of master and message format returned from slave

In order to support some hosts without 64-bit data type (such as some configuration software, PLC), the data in the address segment of 0x1000-0x105B has been
enlarged by 2° times. The purpose is to ensure the accuracy of the data and make the integer part and decimal part of the data can be processed separately.
2.1. read multiple registers
Example 1: Read count (timing) value (complete data, 64-bit data format)
1. If the current count value of the meter = 123.456789, the host sends a command to read the 4 registers starting at 0x1000, and the meter returns 0x7B74F01FB8
2. Divide 0x7B74F01FB8, which is 530242871224 decimal, 2* = the current count value of the slave is 123.456789

Communication data order Message Communication data order

Somrrtland Host sends commands : ‘ 521 ‘ i format Slave return message 1234 | 2143 | =4321
orma =1234) = — Address field| _ Table address 0x01
Address field Table address 0x01 Fucntion field| ___Function code 0x03
Fucntion field Function code 0x03 Number of data bytes 0x08

K 0x10 High hiah b 0x00 0x00 O0x1F

Start register | High byte X 'gn Nigh BY9™6x00 | _0x7B 0xB8

address Low byte 0x00)) 0x00 0x00 0x74

Data field Y Data field Count (timer) High byte 0x7B 0x00 0xFO

Read High byte 0x00 value register | | ow byt 0x74_| Ox1F_|_0x00

registers aty | Low byte 0x04 ow byte 0xFO 0xB8 0x7B

Low low byte | —0X1F 0x74 0x00

Error check |~re check Low byte 0x40 0xB8 0xFQ 0x00

field : 0xC9 Error check | CRC check | Low byte 0x62_ [OxFE [0xD6

code High byte X field code High byte 0x5C_| Ox65 | Ox28

Example 2: Read count (timing) value (read-only integer part, 32-bit data format)
1. Assuming the current count value of the slave = 19088743.568, read the integer part of the count value, and the slave returns data = 0x01234567.
2. When reading the integer part of a parameter separately, the returned data 0x01234567=19088743 is the current actual value of the slave (no need to divide by 2)*

C ication data ord Message Communication data order
]E(:)?rr:;\:and Host sends commands ommunlc_a2|1o‘:13 al ig;r formatg Slave return message —1234 [=2143 | =4321
. 1234 { _ { — Address field Table address 0x01
Address field Table address 0x01 Fucntion field Function code 0x03
Fucntion field Function code 0x03 Number of data bytes 0x04
Start register |_High byte 0x10 0x10 The integer | High byte 0x01 | 0x45 | 0x45
address Low byte 0x00 0x02 Data field | part c:f(the) 0x23 | 0x67 | Ox67
. - count (timer
Datafield | number of High byte 0x00 0x00 value Low byte 0x45 | 0x01 | 0x01
read registers| [ow byte 0x02 0x02 0x67 0x23 0x23
Error check | CRC check | LOW byte 0xCO 0x61 Error check | CRC check Low byte 0x79 | Ox1E | Ox1E
field code High byte 0xCB 0x0B field code High byte OX7F | OxA9 | O0xA9

2.2. Write multiple registers
Example 3: Write 12345.678 to the slave PS2 set value register
1. If the host supports the 64-bit data format, you can directly multiply 12345.678 by 2°%2= 53024283256946, and then send it in hexadecimal format
(53024283256946 = 0x00003039AD916872. A total of 8 bytes, fill in 0 in the upper bits when not enough)
2. If the host only supports the 32-bit data format, the integer part and decimal part of 12345.678 need to be processed separately.
2.1. The integer part does not need to be processed, directly put 12345 in hexadecimal format into the upper 4 bytes of the data to be sent (if there are not enough 4
bytes, fill in 0 in the high bit. 12345 = 0x00003039).
2.2. The fractional part of 0.678 needs to be multiplied by 232= 2911987826, and put in the lower 4 bytes of the data to be sent in hexadecimal format (if there are not
enough 4 bytes, fill in 0 in the upper bits. 2911987826 = 0x AD916872).
2.3. Then send the processed 8 bytes of data in the order from high byte to low byte (1234) (0x00003039AD916872), or from low byte to high wbyte
(4321) (0x6872AD9130390000)

Command Host sends commands Communication data order Communication data order
format =1234 I =2143 I =4321 ME;Z?ge Slave return message
Address field Table address 0x01 =1234 | =2143 ‘ =4321
Fucntion field Function code 0x10]
- 0x10 Address field Table address 0x01
Start register High byte X
address Low byte 0x30 Fucntion field Function code 0x10
Number of High byte 0x00 High byte 0x10
write registers | Low byte 0x04 Start register
Write data bytes 0x08 Data field address Low byte 0x30
— ata fiel
Data field _|Highhigh| 0x00 | 0x30 | 0x68 High byte 0x00
Ready to write | byte 0x00 0x39 0x72 Number of
PS2 set value 0x30 0x00 OxAD write registers Low byte 0x04
registration data| High byte
X 0x39 0x00 0x91
(64-b|t data, Low byte 0xC5
high byte first | | ow byte 0xAD 0x68 0x30 Error check CRC check
and low byte 0x91 0x72 0x39 field code High byte 0x05
last) Lowlow | 0x68 | OxAD | 0x00
byte 0x72 0x91 0x00
Error check CRC check Low byte 0x8F 0x63 0xA6
field code Highbyte | OxFB | OxFA | Ox4E

[II. Communication error handling

When the meter detects other errors than the CRC check code error, it will return an error message to the host. The slave will set the highest position of the received function
code to 1, and then return it as an error message together with the table address and error code.

3.1 Slave return error code format

Address code Function code (highest byte 1) Error code CRC check code low byte | CRC check code high byte
1 byte 1 byte 1 byte 1 byte 1 byte
3.2 Error codelllegallllegal function code function codelllegal function code
0x01 lllegal function code The meter does not support the received function code
0x02 lllegal register address The received register address exceeds the address range of the meter’s register
0x03 lllegal number of registers The received register numbers exceeds the number of the meter’s register
0x04 lllegal data value The received data value exceeds the data range of the corresponding address

IV. Data and mapped address
4.1 The data of each parameter in the address segment of 0x1000-0x105B has been enlarged by a factor of 2 . It nééds to be multiplied by 2 befor® writing and divided by 2 whertreading.
4.2 Each parameter in the address segment 0x1000—-0x105B occupies 4 register addresses (4 words, 8 bytes), and the internal data is divided into 1234 (default, high byte first low byte
last) , 4321 and 2143 (low byte first high byte last) are arranged in three order.
4.3. This agreement is a general communication protocol. Please refer to the corresponding product operation manual for whether the instrument has the functions in the agreement and
the value range of the register.

No. Data add Parameter name Data length Data type Attributes Remarks
0x1000 1. When writing, can only write 0, otherwise it returns
] 0x1001 e (e 4 Signed o ?T‘ ey " .
ounting (timer) value “hit i . Timing mode, unit is secon:
041002 64-bit integer Example: Register value = 0xCE3D70A3D
0x1003 Actual time = 0OXCE3D70A3D/2* = 12.89 seconds
0x1004
2 0x1005 Batch or total value 4 Signed r/W | 1- When writing, can only write 0, otherwise it returns
0x1006 64-bit integer an error
0x1007
0x1008
3 0x1009 Frequency, speed, 4 Signed R
0x100a linear speed value 64-bit integer
0x100b
4 reserved
0x1010 4 -
5 0x1011 Initial count value Signed
0x1012 64-bit integer
0x1013
0x1014
6 01015 Counting factor value 4 Signed RIW
0x1016 unting valu 64-bit integer
0x1017
0x1018
. 0x1019 Linear speed 4 Signed R/W
0x101a or batch factor value 64-bit integer
0x101b
8 reserved
0x1020
0x1021 . Signed
9 0x1022 PS1 count setting value 4 64-bit integer R/W
0x1023
0x1024
0x1025 i ;
) 4 Signed R/W Unit: second
PS1 output delay t
10 ox1026 | PS1output delay time 64-bit integer
0x1027
0x1028
0x1029) Signed
" Ox102a | P51 hysteresis 4 64-bit integer S
0x102b
12 reserved
0x1030 1. In the timer mode, the unit is second, and its set
13 0x1031 PS2 count (timer) 4 Signed R/W | value range is determined by the time setting
: “hit i parameter. For example: meter timing range
0x1032 | setting value 64-bit integer = 99H59M59S99, then change the register's writable
0x1033 range = 0.01~35999999S
0x1034
0x1035 | PS2 count (timer) Signed "
14 0x1036 | output delay time 4 64-bit integer Rw | Unit: second
0x1037
0x1038
15 0x1039) 4 Signed R/W
0x103a PS2 hysteresis 64-bit integer
0x103b
16 reserved
0x1040
0x1041) Signed
17 Oxi0az | LSV setting value g 64-bit integer R
0x104 3
0x1044
0x1045 Signed .
18 0x1046 | LSV output delay time 4 BAbi integer RW | Unit: second
0x1047
0x1048
0x1049 Signed
19 0x104 a LSV hysteresis & 64-bit integer R
0x104b
20 reserved
0x1050
0x1051 Signed
21 0x1052 | BAS setting value 4 64-bit integer R
0x1053
0x1054
0x1055) Signed .
22 0x1056 | BAS output delay time 4 64-bit integer RW | Unit: second
0x1057
0x1058
23 0x1059 | pag hysteresis 4 Signed R/W
0x105a 64-bit integer
0x105b
reserved

4.4 Each parameter in the 0x1100--0x1164 address segment occupies 1 register address (1 word, 2 bytes), the data in the register is high byte first low byte last.

No. Data Add Parameter Name Data Length| Data Type Attributes Remarks
24 0x1100 Communication address 1 Unsigned 16-bit integer] R/W 1~247
25 0x1101 Reserved
26 0x1102 Reserved
27 0x1103 Communication baud rate 1 Unsigned 16-bit integer| R/W 4800=4800bit/'s ,9600=9600bit/s ,19200=192 00bit/s
28 0x1104 gzrt?]rcr)\:nication verification 1 Unsigned 16-bitintegerl R/W | 0 = no check, 1 = odd check, 2 = even check
Example:
When sending or receiving data 0x1020304050607080,
The corresponding order of different settings as follows:
Communication data byte
(register) sequence Unsigned 16-bit integer =1234, the order of receiving and sending
2 01105 selection ! 9 9el RW 1 - 10 20 30 40 50 60 70 80;
= 2143, the order of receiving and sending
=3040 1020 70 80 50 60;
=4321, receiving and sending sequence
=7080 5060 3040 1020
30 ox1106 | Batchtotallaccumulation 1 Unsigned 16-bitintegerl R/W | 0 = accumulate by batch, 1 = accumulate by total
method selection
31 0x1107 Function selection 1 Unsigned 16-bit integerl R/W | O=count, 1=time, 2=frequency, 3=speed, 4=line speed
Ascending or descending i Lo - q - .
32 0x1108 et Sl 1 Unsigned 16-bit integerl R/W | 0 = ascending , 1 = descending
33 0x1109 NPN, PNP selection 1 Unsigned 16-bit integerl R/W | 0 = NPN, 1 = PNP
34 0x110a Input type selection 1 Unsigned 16-bit integer| R/W 0=U, 1=D, 2=UD -A, 3=UD -B, 4=UD -C, 5=UD -D
1=1Hz ,30=30Hz ,1000=1KHz ,5000=5KHz ,
35 0x110b Input frequency selection 1 Unsigned 16-bit integer] R/W
10000=10KHz , 20000= 20KHz
36 0x110c External signal width selection 1 Unsigned 16-bit integer] R/W Actual pulse width, unit: ms
37 0x110d Reserved
38 0x110e Reserved
39 0x110f | Timing range selection 1 Unsigned 16-bit integer) R | 0= 999999599
256 = 99h59m59s99
40 0x1110 | Delay range selection 1 Unsigned 16-bit integer|l R | 212 = 9999h59m59s
Note: Non-time relay or timing mode, invalid write
41 0x1111 Reserved
42 0x1112 . . . 1 . AR RIW 0=no decimal point or floating decimal point,
X Show decimal point selection Unsigned 16-bit integer 1=1 decimal point, 2=2 decimal point, ...
43 0x1113 Display refresh time selection 1 Unsigned 16-bit integer| R/W | Unit (10ms): O=auto refresh, 50=0.5 seconds, 100=1 second
44 0x1114 Reserved
45 0x1115 Reserved
0=F 1=N 2=C 3=R
46 0x1116 | Count output mode selection 1 Unsigned 16-bit integel R/W | 4=K 5=pP 6=Q 7=A
8=8 9=T 10=D 1M1=M
0=0OND 1=0ND.1 2=0ND.2 3=FLK
47 0x1117 | Timer output mode selection 1 Unsigned 16-bitintegerl R/W | 4 = FLK.1 5=FLK.2 6=INT 7=INTA
8=0FD
48 0x1118 SV1 output mode selection (reserved) 1 Unsigned 16-bit integer] R/W
49 0x1119 SV2 output mode selection (reserved) 1 Unsigned 16-bit integer] R/W
50 0x111a SV3 output mode selection (reserved) 1 Unsigned 16-bit integer] R/W
51 0x111b LSV output mode selection (reserved) 1 Unsigned 16-bit integer; R/W
52 0x111c BSV output mode selection (reserved) 1 Unsigned 16-bit integer] R/W
53 0x111d Power failure memory function 1 Unsigned 16-bit integerf R/W [0 = OFF, 1=ON
54 0x111e Start function 1 Unsigned 16-bit integerf R/W | 0= OFF, 1=ON
55 ox111f Reserved
56 0x1120 Reserved
57 0x1121 Reserved
58 0x1122 Password setting
59 0x1160 OUT1 output status 1 Unsigned 16-bit integer| R 0 = no action, 1 = action
60 0x1161 OUT2 output status 1 Unsigned 16-bit integer| R 0 = no action, 1 = action
61 0x1162 OUT3 output status 1 Unsigned 16-bit integer| R 0 = no action, 1 = action
62 0x1163 | LSO output status 1 Unsigned 16-bitinteger; R 0 = no action, 1 = action
63 0x1164 | BAO output status 1 Unsigned 16-bit integer] R 0 = no action, 1 = action

