■ 注意安全

※ 在使用前请认真阅读说明书

※ 请遵守下面的要点

▲ 警告 如果不按照说明操作会发生意外。

△ 注意 如果不按照说明操作会导致产品毁坏。

* 操作说明书中的符号说明如下

▲ 在特殊情况下会出现意外或危险

▲ 警告

- 1.在以下情况下使用这个设备,如(核能控制、医疗设备、汽车、火车,飞机、航空、娱乐或安全装置等),需要 安装安全保护装置,或联系我们索取这方面的资料,否则会引起严重的损失,火灾或人身伤害。
- 2.必须要安装面板,否则可能会发生触电。
- 3.在供电状态中不要接触接线端子,否则可能会发生触电。
- 4.不要随意拆卸和改动这个产品,如确实需要请联系我们,否则会引起触电和火灾。
- 5.请在连接电源线或信导输入时检查端子号,否则会引起火灾。 6.在使用上下限报警时,要先等此仪表开机稳定后,再接上给测量,然后设置好上下限回差值才能接被控制器,

▲ 注意

- 1.这个装置不能使用在户外,否则会缩短此产品的使用寿命或发生触电事故。
- 2. 当电源输入端或信号输入端接线时, No. 20AWG (0.50mm) 螺丝拧到端子上的力矩为0.74n·m 0.9n·m, 否则可能会发生损坏或连接端子起火。尽量使用BVR软线以保证接触面积。
- 3.请遵守额定的规格,否则会缩短这个产品的寿命后发生火灾。
- 4.清洁这个产品时,不要使用水或油性清洁剂,否则会发生触电或火灾,也将损坏本产品。
- 5.在易燃易爆,潮湿,太阳光直射,热辐射,振动等场所应避免使用这个单元。否则可能会引起爆炸。
- 6.在这个单元中不能有流尘或沉淀物。否则可能会引起火灾或机械故障
- 7.不要用汽油,化学溶剂清洁仪表外壳。使用这些溶剂会损害仪表外壳。请用柔软的湿布(水或酒精)清洁塑料外壳。

一、仪表型号

第1页

特点:

- ◎真有效值测量与平均值测量可选
- ◎电压/电流量程变比自由设定
- ◎5位拨码设定,高、中、低三组继电器控制输出,操作简单
- ◎具有跟踪保持功能
- ◎隔离变送4~20mA输出
- ◎可用于电子、机械等行业生产线自动检测用
- ◎RS485通信
- ◎400Hz中频可订做

KKDP4C02-A/3-20231017

二、型号及说明

◆交流数字电压表

型号规格	量 程	分辨力	输入阻抗	互感器变比	精 度	最大允许输入
DP4(I)-AV20	20V	1mV	1.2M	直接輸入	±0.1%F.S±3Digits	200V
DP4(I)-AV200	200V	10mV	12M	直接輸入	±0.1%F.S±3Digits	1000V
DP4(I)-AV600	600V	100mV	12M	直接輸入	±0.2%F.S±3Digits	1000V
DP4(I)-AV3K	3KV	1V	12M	3KV/100V	±0.2%F.S±3Digits	1000V
DP4(I)-AV10K	10KV	1V	12M	10KV/100V	±0.2%F.S±3Digits	1000V

数字电压/电流表使用说明书

注:括号中"1"表示可选择,如用户不需要带变送输出的仪表,选择没有"1"的型号即可。如DP41-PRTAV20B为国产上下限拔码 设定继电器输出及通信功能,带4~20mA变送输出,交流电压20V输入4位半电压表。

◆交流数字由流表

型号规格	量 程	分辨力	输入阻抗	互感器变比	精 度	最大允许输入
DP4(I)-AA0.2	200mA	10μΑ	0μA 0.8Ω 直接输入 ±0.1%F.S±3Digits		500mA	
DP4(I)-AA2	2A	100μΑ	0.1Ω	直接輸入	±0.1%F.S±3Digits	3A
DP4(I)-AA□	量程随变比 自由设定	随量程确认	Ω0	5A	±0.1%F.S±3Digits	5A

首流数字电压表

型 号	量 程	分辨力	输入阻抗	测量精度	最大允许输入
DP4(I)-DV0.02	20mV	1μV	1M	±0.1%F.S±3Digits	5V
DP4(I)-DV0.2	200mV	10μV	1M	±0.1%F.S±3Digits	10V
DP4(I)-DV2	2V	0.1mV	1.2M	±0.1%F.S±3Digits	20V
DP4(I)-DV20	20V	1mV	12M	±0.1%F.S±3Digits	200V
DP4(I)-DV200	200V	10mV	12M	±0.1%F.S±3Digits	300V
DP4(I)-DV500	500V	100mV	12M	±0.2%F.S±3Digits	750V
DP4(I)-DV□	用分压器变比100V 引入仪表输入端	随量程变化	12M	±0.2%F.S±3Digits	200V

直流数字电流表

型号	量 程	分辨力	输入阻抗	分流分流器变比	精 度	最大允许输入
DP4(I)-DA0.0002	200uA	10nA	1.2K	直接输入	±0.1%F.S±3Digits	10mA
DP4(I)-DA0.002	2mA	100nA	200Ω	直接输入	±0.1%F.S±3Digits	100mA
DP4(I)-DA0.02	20mA	1μA	20Ω	直接输入	±0.1%F.S±3Digits	500mA
DP4(I)-DA0.2	200mA	10μΑ	2Ω	直接输入	±0.1%F.S±3Digits	1A
DP4(I)-DA2	2A	100μΑ	0.1Ω	直接输入	±0.1%F.S±3Digits	5A
DP4(I)-DA□	分流器输入,变 比用户自由设定	随量程变化	1M	75mV	±0.1%F.S±3Digits	5V

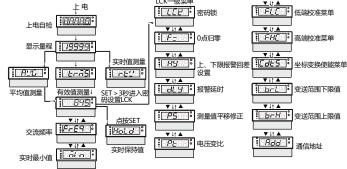
- 说明: (1) 测量精度测试环境条件为:温度25±5℃相对湿度45~85%:使用温度环境为:0~50℃,相对湿度60%±15%。
 - (2) 表中所列配电流互感器、电压互感器、分流器,其型号规格为基本型。其它量程如交流一次额定电为10A、15A、30A、 75A、250A、1500A......,直流一次额定电流为10A、15A、75A、300A、1500A......,交流一次额定电压为1KV、6KV、 11KV、35KV、110KV...... 均可按用户要求供货。
 - (3) 配交流电流互感器其二次额定电流为5A,配交流电压互感器其二次额定电压为100V,配直流电流分流器其 二次额定电压为75mV,若二次额定电流电压为其它数值,用户需予以说明。
 - (4) 变比设定参照5.3仪表参数流程图设定。输入阻抗一般为参考值,具体以出厂登记表为准确。

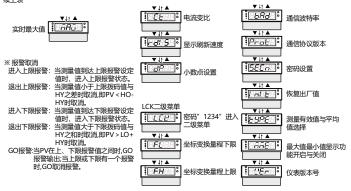
三、技术参数

- 3.1、测量显示范围0~±19999。
- 3.2、具有双5位拔码作上、下限报警及上下限之间报警输出设定,触点容量为AC 250V/1A,DC 30V/1A。
- 3.3、有一路隔离变送电流输出4~20mA,带载能力≤600Ω。
- 3.4、带RS485通信接口,采用Modbus RTU通信协议。
- 3.5、采样速度: 51.2us/次
- 3.6、测量精度:按上述型号表要求, 0.1%F.S≤基本精度≤0.2%F.S。
- 3.7、供电电源: AC/DC 100~240V, 功耗≤3VA

四、面板名称

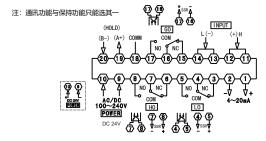
五、菜单参数设定操作


5.1、按键功能说明


A:SET: 参数选择及模式设定键 B: ▼: 参数加循环

C:点动▲为移位操作

- 5.2、参数修改操作:
- A: 按SET > 3秒进入LCK设定进入密码1234点按SET进入设定菜单。 B: 点按 "▲" "▼"循环菜单,如果观察设定值可点按SET进入和退出。
- C: 当进入观察设定值状态时,按"▼"键修改当前值,按"▲"键是移
- D: 如果要修改菜单值,可按 "▲" 移位 "▼" 修改菜单值,改好后点按 SET确认并退出。
- E: 参数修改好后,长按SET退出参数设定,进入测量值。



六、菜单流程

显示菜单名称	菜单说明							
רכיי	实时值测量,直流表有效							
trā5	此菜单表示当前状态为有效值测量,出厂默认为有效值测量,交流表有效							
A'.'G	此菜单表示当前状态为平均值测量,如需平均值测量需在设置菜单type里更改为avg,	交流表有效						
FrE9	交流频率测量菜单,测量实时的交流频率,交流表有效							
ōl n	实时最小值测量菜单,点按set键刷新,出厂默认关闭,如需要设置菜单里将MME功能	能打开						
กลอ	实时最大值测量菜单,点按set键刷新,出厂默认关闭,如需要设置菜单里将MME功能	能打开						
HoLd	保持值显示菜单,在测量状态下点按set键就会进入实时值保持状态,如需取消此状态	R持值显示菜单,在测量状态下点按set键就会进入实时值保持状态,如需取消此状态,点按set键						
设置菜单名称	菜单说明 (带 "①" 或 "②" 项分别为LCK一级、二级菜单)	出厂默认						
רנה @	设置菜单密码锁							
F_ ①	0点归零设置,归零范围:以此零为基点±99个字符,此功能将设置范围内的值强制归"0"	0						
HY ①	上、下限报警回差设置,无拨码及报警时此菜单无效(≤2000)	5						
dLY ①	报警延时设置,设定范围0.01~60.00秒	0						
<i>P5</i> ①	测量值平移修正,为变比计算后修正值,用于修正系统误差,PV显示值=PV测量值+修正值,设置范围±1000	0						
<i>₽</i> Ŀ ①	电压变比菜单,数值显示对应输入信号高端,电压表有效(≤19999)	随固定量程						
[F ①	电流变比菜单,数值显示对应输入信号高端,电流表有效(≤19999)	随固定量程						

第4页

八、接线图

九、通讯协议

DP4电流/电压表使用Modbus RTU通信协议,进行RS485半双工通信,读功能号0x03,写功能号0x10,采用16 位CRC校验,仪表对校验错误不返回。

数据帧格式:

l	起止位	数据位	停止位	校验位
	1	8	1	无

通信异常处理:

异常应答时,将功能号的最高位置1。例如: 主机请求功能号是0x04, 则从机返回的功能号对应项为0x84。

0x01--功能码非法: 仪表不支持接收到的功能号。

0x02-数据位置非法: 主机指定的数据位置超出仪表的范围。 0x03-数据值非法: 主机发送的数据值超出仪表对应的数据范围。

CRC校验码错不返回数据。

1、读多寄存器

例: 主机读取变送测量范围上限BRH (BRH=19999)

BRH的地址编码是0x4814,因为BRH是(4字节),占用2个数据寄存器。十进制19999的十六进制内存

	主机请水(读多奇仔器)									
1	2	3	4	5	6	7	8			
表地址	功能号	起始地址高位	起始地址低位	数据字长高位	数据字长低位	CRC码的 低位	CRC码的 高位			
0x01	0x03	0x48	0x14	0x00	0x02	0x93	0xAF			

	从机正常应答(读多寄存器)									
1	1 2 3 4 5 6 7 8 9									
表地址	功能号	数据字节数	数据1 高位	数据1 低位	数据2 高位	数据2 低位	CRC码的 低位	CRC码的 高位		
0x01	0x03	0x04	0x4E	0x1F	0x0	0x0	0xDC	0xDD		

续上表		
rd: 50	显示刷新速度,此处设置值代表测量值每秒的刷新次数,设置范围1-9	5
<i>d₽</i> ①	小数点设置菜单,DIS是自动变更小数点,0、1、2、3、4表示设置第几位小数点	DIS
LER @	设置菜单密码为"1234"时,进入二级菜单,数值可在secn菜单中更改(0~99999)	1234
FL ②	坐标变换下限菜单,显示值对应校准FLC时的低端信号值(-19999~99999)	0
FH ②	坐标变换上限菜单,显示值对应校准FHC时的高端信号值(-19999~99999)	满量程
FLC ②	低端輸入校准菜单,操作方法:点按set键,点按移位键"▲"闪动,输入低端信号,点按set键确认	
FHC 2	高端输入校准菜单,操作方法:点按set键,点按移位键"▲"闪动,输入高端信号,点按set键确认	
CdE5 ②	坐标变换使能菜单,客户如需用到此功能,请将菜单改为yes,此时FL、FH、FLC、FHC四个菜单有效,客户根据自己的使用情况校准和更攻FL、FH菜单	no
brl ②	变送范围下限值设定 (-19999~99999)	0
Б гН ②	变送范围上限值设定 (-19999~99999)	满量程
Add @	通讯地址设定,设置范围1~254	1
<i>bAd</i> ②	通讯波特率设定,9.6=9.6K bit/s,4.8=4.8K bit/s,选用高速模块时,波特率可达115K bit/s	9.6K
Prot 2	通讯协议数据格式,a和b为长整形数据(long),a表示高字在前低字在后,b表示低字在前高字在后,c和d为浮点型数据(float),c表示高字在前,d表示低字在前	b
SECn	密码设置菜单,此处可设置LCK密码(0~99999)	1234
Inlt@	恢复出厂设置,进入菜单点按移位键"本"闪动sure,点按set键确认退出,可恢复出厂设置	
ŁУРЕ ②	测量有效值平均值选择菜单,有效值trms、平均值avg	trms
ನ್ನ€ ②	最大值最小值显示功能开启与关闭菜单,no关闭,yes面板最大最小值,rHmax 后端保持最大值,rHmin后端保持最小值	no
<u>''</u> Er ②	仪表程序版本号	

七、外形开出孔尺寸 (单位: mm)

第5页

功能号异常应答:(例如主机请求功能号为0x04)

	从机异常应答(读多寄存器)							
1	2	3	8	9				
表地址	功能号	错误码	CRC码的 低位	CRC码的 高位				
0x01	0x84	0x01	0x82	0xC0				

2、写多路寄存器

例: 主机HY (报警值回差20) HY的地址编码是0x480A, 因为HY是(4字节),占用2个数据寄存器。十进制20的16进制内存码为0x0014。

	主机请求(写多寄存器)											
1	2	3	4	5	6	7	8	9	10	11	12	13
表地址	功能号	起始地址高位	起始地低高位	数据字长高位	数据字长低位	数据字节长度	数据1 高位	数据1 低位	数据2 高位	数据2 低位	CRC 低位	CRC 高位
0x01	0x10	0x48	ΟχΟΑ	0x00	0x02	0x04	0x00	0x14	0x00	0x00	0x65	0xD7

	从机正常应答(写多寄存器)									
1	2	3	4	5	6	7	8			
表地址	功能号	起始地址 高8位	起始地址 低8位	数据字长高位	数据字长低位	CRC码的 低位	CRC码的 高位			
0x01	0x10	0x48	0x0A	0x00	0x02	0x76	0x6A			

数据位置错误应答

从机异常应答(读多寄存器)						
1	2	3	8	9		
表地址	功能号	错误码	CRC码的 低位	CRC码的 高位		
0x01	0x90	0x02	0xCD	0xC1		

DP4系列仪表地址映射表

序号	地址映射	变量名称	字长	取值范围	读写允许	备注
0	0	序列号	3		R	
1	0x4000	电压	2		R	
2	0x400C	电流	2		R	
3	0x4032	频率	2		R	
4	0x4800	电压变比PT	2	满量程正值 (19999)	R/W	
5	0x4804	电流变比CT	2	满量程正值 (19999)	R/W	
6	0x4808	报警上限	2	满量程正值	R	
7	0x480a	报警回差HY	2	满量程值 (≤2000)	R/W	
8	0x480c	报警下限	2	满量程负值	R	·
9	0x4814	变送范围上限BRH	2	满量程正值	R/W	·

10	0x4816	变送范围下限BRL	2	满量程负值	R/W	
11	0x4820	电压平移修正PS	2	-1000 ~ 1000	R/W	
12	0x4826	电流平移修正PS	2	-1000 ~ 1000	R/W	
13	0x4902	报警延时DLY	1	0~9	R/W	
14	0x4a01	地址ADD	1	1 ~ 254	R/W	
15	0x4a02	波特率BAD	1	0~6	R/W	0:2400、1:4800、 2:9600、3:19200、 4:38400、5:57600、 6:115200
16	0x4a09	协议版本TROT	1	A、B、C、D	R/W	
17	0x4a0a	刷新率RDIS	1	1~9	R/W	
18	0x4a0b	归零范围FZ	1	0~9	R/W	
19	0x4a0c	仪表类型 (平均值, 有效值) type	1	0~1	R/W	0:有效值 trms 1:平均值 avg
20	0x4a0d	最大最小值使能MME	1	0~3	R/W	0:no 1:yes 2:rHmax 3:rHmin
21	0x4a0e	坐标变换使能CDTS	1	0~1	R/W	0:no 1:yes
22	0x220e	坐标变换量程下限FL	2	整个量程	R/W	
23	0x2210	坐标变换量程上限FH	2	整个量程	R/W	
24	0x4a0f	小数点位置	1	0~5	R/W	

```
4 字节字符内码表示的浮点数转化成十进制浮点数的程序

float Bytes ToFloat(unsigned char *pch)
{
    float result;
    unsigned char *p;
    p=(unsigned char *)&result;
    *p=*pch; *(p+1)=*(pch+1); *(p+2)=*(pch+2); *(p+3)=*(pch+3);
    return result;
}
+进制浮点数按    IEEE - 754 标准转化成 4 字节字符内码表示的程序
void FloatToChar(float Fvalue, unsigned char *pch)
{
    unsigned char *p;
    p=(unsigned char*)&Fvalue;
    p=(unsigned char*)&Fvalue;
}
```

```
16 位 CRC
unsigned int Get_CRC(uchar *pBuf, uchar num)
{
    unsigned i,j;
    for(i=0; i<num; i++)
    {
        wCrc ^= (unsigned int)(pBuf[i]);
        for(j=0; j<8; j++)
        {
            wCrc >>= 1;
            pb验码获取程序 wCrc ^= 0xA001;
            }
            else
            {
            unsigned int wCrc = 0xFFFF; wCrc >>= 1;
            }
        }
        return wCrc;
}
```

第9页