

Intelligent Voltage/Ampere Meter User Manual

Features:

Safe Caution

Hotline: 400-0760-168

- One meter support 3 input ranges maximum.
 With measurement display, alarm output, analog output, communication etc.
- 3. Two DI input and two DO output functions are available
- This product is used for voltage or current monitoring in industrial machinery, machine tools and related equipment.
- 5. AC and DC effective value measurement, polarity display can be selected for DC measurement.
- 6. Economical and practical, easy to operate.

The instruction, for DWL series Voltage/Ampere Meter, explain instrument settings, connections,name and etc, please read carefully before you use the temperature controller. Please keep it properly for necessary reference.

A Warning

1) When the failure or abnormal of products lead to a system of major accidents, please set the proper protection circuit in the external

National High-tech Enterprise/ National Standard Drafting Unit

KKDLW-A01E-A0-20220712

g. where has air conditioning or heating of air blowing directly to the site h. where will be illuminated directly by sunlight i. where accumulation of heat will happen caused by radiation.

- 4) For installation occasions, please consider the following points before installation.
 - In order to protect heat saturated, please ensure adequate ventilation space. a, b, Please consider connections and environment, and ensure that the products below for more than 50mm space.
 c. Please avoid to installed over the machine of the calorific value(Such as heaters,

 - transformer, semiconductor operations, the bulk resistance). d、When the surrounding is more than 50°C, please using the force fan or cooling fans. But don't let cold air blowing directly to the product.

 - In order to improve the anti interference performance and security, please try to stay away from high pressure machines, power machines to install.
 f, Don't install on the same plate with high pressure machine and the product.
 g. The distance should be more than 200mm,

 - h、Please install the power machine as far as possible

Cable caution:

1) This product is a single-channel measuring instrument, each instrument can only accept one measurement signal input, and the unused channel should not be connected to the wire.

In the high voltage or current measurement circuit, the instrument should be input with the appropriate PT or CT ratio; the necessary fuse, voltage open circuit, open circuit, current short circuit, and open contact should be added to the instrument input front end circuit.
 In order to avoid the effect of noise, please put the input dignal away from meter cable,

power cable, load cable to wiring. 4) In order to reduce the power cables and the load power cables on the effect of this product, please use noise filter in the place where easy to effect.You must install it on the grounding of the disk if you use the noise filter and make the wiring to be shortest between noise filter output side and power connectors.Don't install fuse and switch on the wiring of noice filter output side,otherwise it will reduce the effect of noise filter.

5) It takes 5s from input power to output.6) Please use twisted pair with a shield for analog output line to ensure the reliability of signal, if necessary.

7) Please use twisted pair with a shield for remote RS485 communication cable, and deal

with the shield on the host side earth, to ensure the reliability of signal. 8) This product don' t have the fuse; please set according to rated voltage 250V,rated

current 1A if you need; fuse type:relay fuse. 9) Please use the suitable screw force and crimp terminal.

The screw terminal size: M3X8 (with 6.8X6.8 square base) Recommended tightening torque: 0.4N.m Proper cables: 0.25 ~ 1.65mm single cable/multiple core cable 10) Please don't put the Crimp terminal or bare wire part contact with adjacent

connector

II. Model Illustration

DLW	
2/12	

3) Not allow to use outside the scope of product specification, otherwise it may lead to fire, fault.4) Not allow to use in the place where is inflammable and explosive gas.

5) Do not touch power terminal and other high voltage part when the power on, otherwise you may

get an electric-shock. 6) Do not remove,repair and modify this product,otherwise it may lead to electric shock, fire, fault.

 The product should not be used in a nuclear facility and human life associated medical equipment.
 The product may occur radio interference when it used at home.You should take adequate countermeasures

3) The product get an electric shock protection through reinforced Insulation. when the product is embedded in the devices and wiring,please subject to the specification of embedded devices. 4) In order to prevent surge occurs,when using this product in the place of over 30m indoor wiring

and wiring in outdoor,you need to set the proper surge suppression circuitry. 5) The product is produced based on mounting on the disk. In order to avoid to touch the wire

connectors,please take the necessary measures on the product. 6) Be sure to observe the precautions in this manual, otherwise there is a risk of a major injury or

accident

When wiring, please observe the local regulation.

8) To prevent to damage the machine and prevent to machine failure, the product is connected with power lines or large capacity input and output lines and other methods please install proper capacity fuse or other methods of protection circuit.

 Please don't put metal and wire clastic mixed with this product, otherwise it may lead to electric shock, fire, fault. 10) Please tighten screw torque according to the rules. If not, it may lead to electric shock and fire.

11) In order not to interfere with this products to dissipate heat, please don't plug casing around the cooling vent hole and equipment.

12) Please don't connect any unused terminal.
13) Please do the cleaning after power off, and use the dry cleaning cloth to wipe away the dirt. Please don't use desiccant, otherwise, it may casue the deformation or discoloration of the product. 14) Please don't knock or rub the panel with rigid thing.

15) The readers of this manual should have basic knowledge of electrical, control, computer and communications.

16) The illustration, example of data and screen in this manual is convenient to understand instead of guaranteeing the result of the operation.

17) Regular maintenance is necessary for long-term safe use of this product. Some parts of this product are subject to life restrictions, and some may change due to long-term performance. 18) The contents of the manual may be changed without prior notice. If there is any questions or objections, please contact us

△ Caution of Installation & Connection

- This product is used in the following environmental standards 1)
- (IEC61010-1) [Overvoltage categoryII、 class of pollution 2] This product is used in the following scope:surrounding environment, temperature, humidity 2) This product is used in the following scope surrounding environment, temperaturation and environmental conditions. Temperature: 0 ~ 50°C; Humidity: 45 ~ 85%RH; Environment condition: Indoor warranty. The altitude is less than 2000m.
 Please avoid using in the following places:

 a. will be dew for changing temperature
 b. will be dew for changing temperature

1/15

- b. with corrosive gases and flammable gas;c. with vibration and impact
- d. with water, oil, chemicals, smoke and steam facilities with dust, salt, metal powder
- with clutter interference, static electric, magnetic fields and noise f.

III. Model

Model	Alarm output	Analog output	RS485 communication	DI	Input range			
DLW□-IRC18V600	2 alarms	4~20mA	Yes	Yes	IN1:6V,IN2:60V,IN3:600V			
DLWD-IRC18V200	2 alarms	4~20mA	Yes	Yes	IN1:2V,IN2:20V,IN3:200V			
DLW□-IRC18V100	2 alarms	4~20mA	Yes	Yes	IN1:1V,IN2:10V,IN3:100V			
DLW□-IRC18A2	2 alarms	4~20mA	Yes	Yes	IN1:2A,IN2:0.2A,IN3:0.02A			
DLW□-IRC18AACT	2 alarms	4~20mA	Yes	Yes	IN1:AC 5A			
DLW□-IRC18DACT	2 alarms	4~20mA	Yes	Yes	IN1:75mV			
DLWD-RC10V600	2 alarms	No	No	No	IN1:6V,IN2:60V,IN3:600V			
DLW□-RC10V200	2 alarms	No	No	No	IN1:2V,IN2:20V,IN3:200V			
DLWD-RC10V100	2 alarms	No	No	No	IN1:1V,IN2:10V,IN3:100V			
DLWD-RC10A2	2 alarms	No	No	No	IN1:2A,IN2:0.2A,IN3:0.02A			
DLW□-RC10AACT	2 alarms	No	No	No	IN1:AC 5A			
DLW□-RC10DACT	2 alarms	No	No	No	IN1:75mV			
DLW□-V600	No	No	No	No	IN1:6V,IN2:60V,IN3:600V			
DLWD-V200	No	No	No	No	IN1:2V,IN2:20V,IN3:200V			
DLWD-V100	No	No	No	No	IN1:1V,IN2:10V,IN3:100V			
DLW□-A2	No	No	No	No	IN1:2A,IN2:0.2A,IN3:0.02A			
DLWD-AACT	No	No	No	No	IN1:AC 5A			
DLWD-DACT	No	No	No	No	IN1:75mV			
DLWD-IAACT	No	4~20mA	No	No	IN1:AC 5A			
V. Technical Specification								

Power Supply 100~240V AC/DC (85-265V) (counting more than 2000) ± 0.5% F.S ± 3 digits @ 25±3 degrees Accuracy and the measured temperature drift is less than 500ppm Resolution Default range minimum unit display value of or 12bits Hz range: 45 ~ 400Hz AC frequency Accuracy guarantee range: 50~100Hz Relay capacity AC 250V /1A rated load life > 100000 times Power consumption < 6VA Indoor use, 0 ~ 50°C without condensation, humidity: < 85%RH, altitude<2000m Ambient condition -10~60°C, no condensation Storage environment Switch input Passive dry contact input Current output DC 4~20mA Load<500Ω Temperature drift 300PPM RS485 interface, Modbus-RTU procotol, connect up to 30 units max Comm. port Insulation resistance Input, output, power supply to the case $\,>20 M\Omega$ Electrostatic discharge IEC/EN61000-4-2 Contact ±4KV /Air ±8KV perf.Criteria B IEC/EN61000-4-4 ±2KV Pulse group immunity perf.Criteria B Surge immunity IEC/EN61000-4-5 perf.Criteria B ±2KV Voltage sag&short-tern IEC/EN61000-4-29 0%~70% perf.Criteria B interruption immunity

<u> </u>					
	Signal input: in1,in2,in3				
	4 ~ 20mA Analog output				
POWER	RS485 Communication output				
	DI input S1,S2				
	Relay alarm output AL1,AL2				
Strengthen insulation		General functional insulation			

V. Panel Instruction

No.	Symbol	Name	Function				
	AL1	AL1 indicator light	1st alarm(DO) indicator light, there is alarm(DO) output when it is on, no alarm(DO) output when it is off				
1	AL2	AL2 indicator light	2nd alarm(DO) indicator light, there is alarm(DO) output when it is on, no alarm(DO) output when it is off				
	S1	S1 indicator light	1st switching value S1(DI1) indicator light, there is S1(DI1) input when it is on, there is no input when it is off				
	S2	S2 indicator light	2nd switching value S2(Dl2) indicator light, there is S2(Dl2) input when it is on, there is no input when it is off				
	V V(mV) unit (mV) indicator light		Voltage unit indicator light, the unit is V when it is normally on, the unit is mV when it is flashing.				
2	A (mA)	A(mA) unit indicator light	Current unit indicator light, the unit is A when it is normally on, the unit is mA when it is flashing.				
3	SET	SET key	Menu key/ confirm key, used to enter or exit parameter modification mode, or confirm/save modified value.				
4	*	Shift key	Activate key/ parameter checking key/ shift key to modify parameter				
5	*	Add key	Increase key, used to increase parameter value				
6	≽	Reduce key	Decrease key, used to decrease parameter value				
	4/12						

2) Menu:

No.	Name	Illustration	Setting range	Factory set
1	INP	Input channel & range selection, 0(IN1): 1st channel 1(IN2): 2nd channel 2(IN3): 3rd channel Corresponding communication code 0 ~ 2. Set this parameter to select corresponding physical range	0~2	
2	MET	Measurement & display type selection 0(AC): used to measure AC voltage or current. 1(DC): used to measure DC voltage or current. Communication code: 0~1.	0~1	AC
3	AL1	1st alarm value	-1999~9999	90%FS
4	HY1	1st alarm hysteresis	0~9999	10
5	AD1	1st alarm mode 0(NO): No alarm output. When it is set as this mode, alarm function does not work; alarm relay is used for 1st switch output, DO1 output. 1(H): High limit alarm output. When it is set as this mode, and PV≥AL1; if ALT1=0, alarm outputs immediately; if ALT1≠0, alarm outputs when delay time is over. 2(L): Low limit alarm output. When it is set as this mode, and PV <al1; alarm="" alt1="0," if="" outputs<br="">immediately; if ALT1≠0, alarm outputs immediately; if ALT1≠0, alarm outputs when delay time is over. 3(ODE): Beyond deviation interval alarm output. When it is set as this mode, and PV≤AL1-HY1 or PV≥AL1+HY1; if ALT1=0, alarm outputs immediately; if ALT1≠0, alarm outputs when delay time is over; otherwise, cancel alarm output. 4(IDE): Among deviation interval alarm output.When it is set as this mode, and AL1-HY1≤PV≤AL1+HY1; when ALT1=0, alarm outputs immediately; when ALT1≠0, alarm outputs when delay time is over; otherwise, cancel alarm output. Refer to "Note1" for output logic diagram. PV is measured value. The corresponding communication code for NO, H, L, ODE, IDE is 0~4.</al1;>	0~4	н
6		1st alarm delay time or DO1 output time, this value is without decimal point. Unit: second	0~9999	0
7	AL2	2nd alarm value	-1999~9999	10%FS
8	HY2	2nd alarm hysteresis	0~9999	10

VI. Operation process & menu illustration

1) Operation process diagram

Measuring & control mode

Press "SET" > 3 secon SET SET input channel SET & range selection SET Measurement yes selection SET 1st alarm value SET	LCP ion set PS set CLE	when LCK=33 Lock SET Amend value Small value clearance set value	SET JP SET FL SET FH SET	Version Decimal point Measuring range low limit Measuring range high limit Analog range	SET CRH †SET CRL †SET CRE †SET CRE	Self-calibration high limit Self-calibration low limit Self-calibration enable setting Display value
HS 1 HS 1 hysteresis ↓SET Rd 1 SET SET SET 1st alarm mode	RLE2 SET RJ2 SET	2nd alarm delay time 2nd alarm mode 2nd alarm	SET SET SET Rdd	low limit Analog range high limit Comm. address	SET FE SET Units SET	measuring method Filter coefficient Measurement unit
ALE 1st alarm delay time SET SET SET SET SET SET	<u> </u>	2nd alarm hysteresis	• sет РасъЗ	Baud rate <u>SET</u> Parity check	S IE SET JREC	1st switch input function extension Comm. data endianness setting

Note: The shaded part of the menu will be hidden when there is no such function.

a. After power on, in the normal measurement control interface, keep pressing "SET"

b. In the menu view mode, press the "SET" key to cycle display the regular menu.
Press " or " " key to return to last menu or move forward to next menu.
c. In the menu mame display interface, press the " " key to view the menu parameter value, then short press this key to flash the parameter value and enter the parameter modification mode, each short press of this key can move one digit to the left in cycle. d. In the parameter modification mode, press " or " " key once to add or reduce "1" to the flashing data. "1" to the flashing data.

e. In the parameter modification mode, after the modification, press "SET" to save the modified parameter, press it one more time to return back to menu view mode. f. In the menu view mode or parameter modification mode, keep pressing "SET" key more than 3 second to exit current mode and return to normal measurement control interface.

5/12

Coi	Continue						
9	AD2	2nd alarm mode 0(NO): No alarm output. When it is set as this mode, alarm function does not work; alarm relay is used for 2nd switch output, DO2 output. 1(H): High limit alarm output. When it is set as this mode, and PV≥AL2; if ALT2=0, alarm outputs immediately; if ALT2≠0, alarm outputs when delay time is over. 2(L): Low limit alarm output. When it is set as this mode, and PV <al2; alarm="" alt2="0," if="" outputs<br="">immediately; if ALT2≠0, alarm outputs when delay time is over. 3(ODE): Beyond deviation interval alarm output. When it is set as this mode, and PV≤AL2-HY2 or PV≥AL2+HY2; if ALT2=0, alarm outputs immediately; if ALT2≠0, alarm outputs when delay time is over; otherwise, cancel alarm output. 4(IDE): Among deviation interval alarm output.When it is set as this mode, and AL2-HY2≤PV≤AL2+HY2; when ALT2=0, alarm outputs immediately; when ALT2≠0, alarm outputs when delay time is over; otherwise, cancel alarm output. Refer to "Note1" for output logic diagram. PV is measured value. The corresponding communication code for NO, H, L, ODE, IDE is 0~4.</al2;>	0~4	L			
10	ALT2	2nd alarm delay time or DO2 output time, this value is without decimal point. Unit: second	0~9999	0			
11	CLE	Small value clearance set value, if the absolute value of PV is less than this value, PV return to zero.	0~1000	0			
12	PS	Amend value. Non polar measurement or positive polarity, display value = actual measured value + amend value. Negative polarity, display value = actual measured value - amend value.	-1999~9999	0			
13	LCK	Lock function. 0010: menu set value can be checked only, cannot be modified. 0033: enter the advanced menu.	0~9999	0			
14	DP	Decimal point. 0: 0000 1: 000.0 2: 00.00 3: 0.000 Note: setting or changing the decimal point will affect the alarm set value and display value; after modification, the corresponding set value should be adjusted.	0~3				
15	FL	Measuring range low limit. When the meter is used for voltage and current measurement, please keep this value at 0. Note: this set value must be less than the measuring range high limit.	-1999~9999	0			

Со	ntinue			
16	FH	Measuring range high limit. Modify this value to change the display value high limit. Oftenly used for CT input measurement. For example, the input current of the instrument is AC 5A, the normal display should be 5.00, but if this value is changed to 200.0, the measuring range will be changed to 200A: 5A. Note: this set value must be larger than measuring range low limit.	-1999~9999	100% FS
17	BRL	Analog range low limit. It is used to set the measurement low limit of the analog output, its default value is equal to the set value of measuring range low limit, when there is no special application. When this value is larger than analog range high limit, it is reverse analog output.	-1999~9999	0
18	BRH	Analog range high limit. It is used to set the measurement high limit of the analog output, its default value is equal to the set value of measuring range high limit, when there is no special application. When this value is less than analog range low limit, it is reverse analog output.	-1999~9999	100% FS
19	ADD	RS485 communication address, set the physical address of this equipment	0~255	1
20	BAD	RS485 communication baud rate 0(4.8): 4800; 1(9.6): 9600; 2(19.2): 19200.	0~2	9.6
21	PRTY	RS485 parity check setting 0(NO): No check 2(EVEN): Even check	0~2	0
22	DATC	RS485 communication data endianness setting. Communication data transport sequence setting 0000; 1st & 2nd bit function reserved; 3rd bit is endianness exchange; 4th bit function reserved.	0~9999	0
23	S1E	1st Switch Input function extension. 0(DI): For switch input 1(HOLD): Hold function input 2(MAX): Hold maximum value function input 3(MIN): Hold minimum value function input	0~3	DI
24	UNIT	Measurement unit: 0(NO): No unit indicator. 1(V): Unit "V" indicator light is on. 2(mV): Unit "mV" indicator light flashes. 3(A): Unit "A" indicator light is on. 4(mA): Unit "MA" indicator light flashes. Corresponding communication code : 0 ~ 4.	0~4	Base on the meter model

8/15

VII. Operation for Self-calibration

1) Set INP input channel.

2) Add the input signal to the correct input channel.

a) Enter the low limit calibration menu CAL, press "<<" to flesh "YES"; meanwhile, adjust the input signal to the minimum value and input it to the meter.

4) When "YES" is fleshing and the minimum signal has been inputed to the meter, press "SET" key to confirm and save the calibration value.

5) After the low limit calibration has been done, enter the high limit calibration menu CAH, press "<<" to flesh "YES"

6) Adjust the input signal to the maximum value and input it to the meter. When "YES" is fleshing, press "SET" key to confirm and save the calibration high limit value.

7) After the calibration is done, enter the menu CAE to change "N" to "Y" to

enable the calibration value; otherwise, the meter will still use the default value. 8) The calibrated high low limit value of the linear signal should not exceed ±10%

of the input standard value range. 9) After the calibration, if the result is not satisfied, the meter can be calibrated again.

VIII. Dimension & Panel cutout

IX. Wiring Diagram

Note: please subject to the diagram on the product if any changes. 10/15

ontinue

COL	Continue						
25	FT	Filter coefficient. The larger the value, the stronger the filter function. Can be applied to the occasion of large fluctuation measurement.	0~2000	0			
26	MTH	Display value measuring methods. 0(RMS): Effective value measurement; 1(AVG): Average measurement	0~1	RMS			
27	CAE	User self-calibration enable function. Y: Enable the self-calibration parameters; N: Do not use the self-calibration parameters.	Y/N	N			
28	CAL	Self-calibration low limit input. After add the low end signal to the signal input terminal, flash YES to activate, after confirm and display OK, the input signal low end calibration is completed.	YES/OK	YES			
29	CAH	Self-calibration high limit input. After add the high end signal to the signal input terminal, flash YES to activate, after confirm and display OK, the input signal high end calibration is completed.	YES/OK	YES			
30	VER	Software version					

Note 1: Alarm mode and output logic diagram:

Illustration: "* ATL1 or ATL2 delay time, " I alarm output.

ODE: Beyond deviation interval alarm output

IDE: Among deviation interval alarm output.

9/15

X. Checking methods of simple fault

XI. Communication Protocol

The meter uses Modbus RTU communication protocol, carries out RS485 half-duplex communication, read function code 0x03, write function code 0x10 or 0x06, uses 16-bit CRC check, the meter does not return error check. The communication data type is 16bit integer data (short int), positive numbers are represented by the true form, and negative numbers are represented by the complement; each data seizes one register. The position of the decimal point is determined by the DP parameter, which must be confirmed when processing the data. For example: when DP is 1, the read setting parameter should be divided by 10, then there is one decimal place, and there are three decimal places at most. Note that there is no decimal for setting selection function parameters. Reading data cannot exceed 125 registers at a time, the meter returns 0 for invalid register data. Writing data cannot exceed 4 registers at a time. When there is a data error in the write data packet, an error response will be returned. The communication writing register should not be too frequent, and the data can be written up to 1 million times.

Note: 1. Whether the meter supports the comm. function and is connected to the host correctly, and whether the host supports the corresponding comm. protocol. 2. Whether the meter address ADD is the only value in the comm. link.

3. Whether the baud rate BAD and parity PRTY are consistent with the host.

Whether the host communication sending and receiving cycle time is sufficient, and whether the data type analysis is correct.

Data frame format

Start bit	Data bit	Check bit	Stop bit				
1	8	Set in Menu PRTY	1				

Handling of abnormal communication:

When abnormal response, put 1 on the highest bit of function code. For example: Host request function code 0x03, then slave response function code should be 0x83.

Error code:

0x01--- Illegal function: the function code sent from host is not supported by meter. 0x02--- Illegal address: the register address designated by host beyond the address range of meter.

0x03--- Illegal data: Date value sent from host exceeds the corresponding data range of meter.

Communication cycle:

Communication cycle is the time from host data request to slave data response, i.e.: communication cycle = host request data sending time + slave preparation time + response delay time + response return time

Eg: 9600 baud rate: communication cycle of single measured data ≥250ms.

1. Read Multiple Registers

For example: Host read integer AL1 (alarm value 1800)

The address code of AL1 is 0x4002, because AL1 is integer (2 byte), it seizes 1 data register. The memory code of decimal integer number 1800 is 0x0708. Note: When reading data, read DP value or confirm DP menu value to determine the decimal point position first, and then convert the read data to get the actual value. On the contrary, before writing the data, the data should be converted to the corresponding rate before writing the data to the meter.

Host request (Read multi-register)											
1	2	3		4		5		6	7	,	8
Meter address	Function code	Start Address high bit	Ad	Start Address low bit		ta byte gth h bit	le	ata byte ength ow bit	XCI code low	е	XCRC code high bit
0x01	0x03	0x40	C)x02	0	x00		0x01	0x3	30	0x0A
		Slave	nor	mal ans	swer	(Read m	ult	i-register)			
1	2	3		4		5		6			7
Meter address	Function code	Data by number		e Data high b		Data low bit		CRC c low bit	ode		CRC code h bit
0x01	0x03	0x02		0x07	7	0x08		0xBE	3		0xB2

Function code abnormal answer: (For example: host request address is 0x2010)

Slave abnormal answer(Read multi-register)								
1 2 3 8 9								
Meter Address	Function code	Error code	XCRC code low bit	%CRC code high bit				
0x01	0x83	0x02	0xC0	0xF1				

2. Write Multi-register

For example: Host write integer AL1 (alarm value 1500)

The address code of AL1 is 0x4002, because AL1 is integer (2 byte), seizes 1 data register. The hexadecimal memory code of decimal integer number 1500 is 0x05DC.

	Host request (Write multi-register)										
1	2	3	4	5	6	7	8	9	10	11	
Meter address	Function code	Start address high bit		Data byte length high bit	Data byte length low bit	Data byte lengtl	high	Data low bit		XCRC high bit	
0x01	0x10	0x40	0x02	0x00	0x01	0x02	2 0x05	0xDC	0xE4	0xBF	
	Slave normal answer(write multi-register)										
1		2	3	4	5		6	7		8	
Meter addres	s Func	tion a	tart ddress gh bit	Start address low bit	Data b length high bi	í le	ata byte ngth w bit	e XCI code low	e	*CRC code nigh bit	
0x01	0>	(10 (0x40	0x02	0x0)	0x01	0xE	35	0xC9	

Continue

12/15

Cont	linue				
19	0x4103 (416644)	1st Alarm Mode AD1	1	R/W	
20	0x4104 (416645)	2nd alarm mode AD2	1	R/W	
21	0x4105 (416646)	1st switch output DO1	1	R/W	1: close, 0: open
22	0x4106 (416647)	2nd switch output DO2	1	R/W	1: close, 0: open
23	0x4107 (416648)	1st switch input function extension S1E	1	R/W	
24	0x4108 (416649)	Unit UNIT	1	R/W	
25	0x4109 (416650)	Meter address ADD	1	R/W	
26	0x410A (416651)	Baud rate BAD	1	R	
27	0x410B (416652)	Parity check PRTY	1	R	Note 3
28	0x410C (416653)	Endianness setting DATC	1	R	
29	0x410D (416654)	Lock LCK	1	R	
30	0x410E (416655)	Meter panel status STATUS	1	R	Note 2
31	0x410F (416656)	Meter name	1	R	

Note ①: The register number is to convert the address to decimal and add 1, and then add the register identification code 4 to the front. For example: the register number of the data address 0x4000 is 16384+1=16385 and 4 is added to the front, which is the register number 416385. For related application, please refer to Siemens PLC S7-200. Note ②: Channel status indicator, when the data bit is 1, it means execution; when it is 0, it means no execution.

D7	D6	D5	D4	D3	D2	D1	D0
			НННН	S2	S1	AL2	AL1

Note③: DTC communication data transmission sequence description

DTC: $\Box \Box \Box$ Reserve

Byte transfer order: 0: the transfer order is 1, 2.

1: the transfer order is 2, 1.

- Reserve

Host write single register AL1 (alarm value 1500)

1 2 Meter Function	Host 3	request (V		register)			
	3	4	_				
Motor Eupotion		4	5	6	7	8	
address code	Address high bit	Address low bit	Data high bit	Data low bit	※CRC low bit	<pre>%CRC high bit</pre>	
0x01 0x06	0x40	0x02	0x05	0xDC	0x3F	0x03	
Slave normal answer(write single register)							
1 2	3	4	5	6	7	8	
Meter Function address code	Address high bit	Address low bit	Data high bit	Data low bit	※CRC low bit	<pre>%CRC high bit</pre>	
0x01 0x06	0x40	0x02	0x05	0xDC	0x3F	0x03	

Data value error response (Example: host request write address index is 0x4002)

	Slave abnor	mal answer	(write multi-register)
1	2	3	8	9
Meter address	Function code	Error code	%CRC code low bit	%CRC code high bit
0x01	0x90	0x03	0x0C	0x01

Meter parameters address mapping table

No.	Address (Register No. Note①)	Variable name	Register	R/W	Remark		
1	0x4000 (416385)	Measured value PV	1	R			
2	0x4001 (416386)	Decimal point DP	1	R/W			
3	0x4002 (416387)	1st alarm value AL1	1	R/W			
4	0x4003 (416388)	1st alarm hysteresis HY1	1	R/W			
5	0x4004 (416389)	1st alarm delay time ALT1	1	R/W			
6	0x4005 (416390)	2nd alarm value AL2	1	R/W			
7	0x4006 (416391)	2nd alarm hysteresis HY2	1	R/W			
8	0x4007 (416392)	2nd alarm delay time ALT2	1	R/W			
9	0x4008 (416393)	Display low limit FL	1	R/W			
10	0x4009 (416394)	Display high limit FH	1	R/W			
11	0x400A (416395)	Analog output low limit BRL	1	R/W			
12	0x400B (416396)	Analog output high limit BRH	1	R/W			
13	0x400C (416397)	Filter coefficient FT	1	R/W			
14	0x400D (416398)	Amend value PS	1	R/W			
15	0x400E (416399)	Small value clearance CLE	1	R/W			
	Reserve						
16	0x4100 (416641)	Input channel INP	1	R/W			
17	0x4101 (416642)	Measurement type MET	1	R/W			
18	0x4102 (416643)	Measurement method MTH	1	R/W			

13/15

%16-bit CRC check code to get C program unsigned int Get_CRC(uchar *pBuf, uchar num)

{

unsigned i,j; unsigned int wCrc = 0xFFFF;

for(i=0; i<num; i++)

.

wCrc ^= (unsigned int)(pBuf[i]);

for(j=0; j<8; j++)

 $if(wCrc & 1)\{wCrc >> = 1; wCrc ^ = 0xA001; \}$ else

wCrc >>= 1; }

}

return wCrc;

}